equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.






Os polinômios de Hermite são um exemplo de polinômios ortogonais cujo principal campo de aplicação encontra-se na mecânica quântica, especialmente no estudo do oscilador harmônico unidimensional. São nomeados assim em homenagem a Charles Hermite.

Os cinco primeiros polinômios de Hermite (probabilísticos).

Definição

Os polinômios de Hermite ("polinômios de Hermite probabilísticos") são definidos por:











equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Ou, às vezes, por ("polinômios de Hermite físicos")


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Essas definições não são exatamente equivalentes: uma é o redimensionamento da outra:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

.

Os polinômios físicos podem ser escritos como:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Propriedades

Ortogonalidade

Hn(x) é um polinômio de grau n, com n = 0, 1, 2, 3 ... . Esses polinômios são ortogonais com relação à função peso

 (probabilidade)

ou

 (física)

ou seja,

ou

 (física)

onde  é o delta de Kronecker, que é igual à unidade quando  e nulo no caso contrário. Os polinômios probabilísticos são ortogonais em relação à função densidade de probabilidade normal.

Função geradora

Fórmulas de recorrência

Os polinômios de Hermite (na forma "física") satisfazem as seguintes relações de recorrência:

Decomposição numa série de funções

Qualquer função f contínua pode ser expressa como uma série infinita em termos dos polinômios de Hermite:

Onde as constantes são dadas por:

Outras propriedades

Equação diferencial de Hermite

Os polinômios de Hermite são soluções da equação diferencial de Hermite:[1]

Que na forma canônica pode ser escrita como:

Comentários

Postagens mais visitadas deste blog